FOLIATIONS ON A SURFACE OF CONSTANT CURVATURE AND THE MODIFIED KORTEWEG-DE VRIES EQUATIONS

SHIING-SHEN CHERN & KETI TENENBLAT

Dedicated to Professor Buchin Su on his 80th birthday

ABSTRACT. The modified KdV equations are characterized as relations between local invariants of certain foliations on a surface of constant Gaussian curvature.

Consider a surface M, endowed with a C^{∞} -Riemannian metric of constant Gaussian curvature K. Locally let e_1 , e_2 be an orthonormal frame field and ω_1 , ω_2 be its dual coframe field. Then the latter satisfy the structure equations

(1)
$$d\omega_1 = \omega_{12} \wedge \omega_2, \quad d\omega_2 = \omega_1 \wedge \omega_{12}, \quad d\omega_{12} = -K\omega_1 \wedge \omega_2,$$

where ω_{12} is the connection form (relative to the frame field). We write

$$\omega_{12} = p\omega_1 + q\omega_2,$$

p, q being functions on M.

Given on M a foliation by curves. Suppose that both M and the foliation are oriented. At a point $x \in M$ we take e_1 to be tangent to the curve (or leaf) of the foliation through x. Since M is oriented, this determines e_2 . The local invariants of the foliation are functions of p, q and their successive covariant derivatives. If the foliation is unoriented, then the local invariants are those which remain invariant under the change $e_1 \rightarrow -e_1$.

Under this choice of the frame field the foliation is defined by

$$\omega_2 = 0,$$

and ω_1 is the element of arc on the leaves. It follows that p is the geodesic curvature of the leaves.

We coordinatize M by the coordinates x, t, such that

(4)
$$\omega_2 = Bdt$$
, $\omega_1 = \eta dx + Adt$, $\omega_{12} = udx + Cdt$,

Received September 22, 1981. The first author is supported partially by NSF Grant MCS-8023356.

where A, B, C, u are functions of x, t, and η (\neq 0) is a constant. Thus the leaves are given by t = const, and ηx and u/η are respectively the arc length and the geodesic curvature of the leaves. Substituting (4) into (1), we get

(5)
$$A_x = uB, B_x = \eta C - uA, C_x - u_t = -K\eta B.$$

Elimination of B and C gives

(6)
$$u_t = \left(\frac{A_x'}{u}\right)_{xx} + (uA')_x + \eta^2 K \frac{A_x'}{u},$$

where

$$A' = A/\eta.$$

By choosing

(8)
$$A' = -K\eta^2 + \frac{1}{2}u^2,$$

we get

(9)
$$u_{t} = u_{xxx} + \frac{3}{2}u^{2}u_{x},$$

which is the modified Korteweg-de Vries (= MKdV) equation.

Condition (8) on the foliation can be expressed in terms of the invariants p, q as follows: By (2) and (4) we have

(10)
$$u = \eta p, \quad C = Ap + Bq.$$

If we eliminate B, C in the second equation by using (5), it can be written

(11)
$$\eta q = \left(\log \frac{A_x'}{u}\right)_x = (\log p_x)_x.$$

Introducing the covariant derivatives of p by

(12)
$$dp = p_1 \omega_1 + p_2 \omega_2, \quad dp_1 = p_{11} \omega_1 + p_{12} \omega_2,$$

we have

(13)
$$p_x = p_1 \eta, \quad p_{xx} = p_{11} \eta^2.$$

Hence condition (11) can be written

$$(14) q = (\log p_1)_1.$$

A foliation will be called a K-foliation, if (14) is satisfied. We state our result in **Theorem.** The geodesic curvature of the leaves of a K-foliation satisfies, relative to the coordinates x, t described above, an MKdV equation.

The above argument can be generalized to MKdV equations of higher order. The corresponding foliations are characterized by expressing q as a function of p, p_1 , p_{11} , p_{111} , \cdots .

Is there a similar geometrical interpretation of the KdV-equation itself, which is

$$(15) u_t = u_{xxx} + uu_x?$$

We do not have a simple answer to this question. Unlike the MKdV-equation, the sign of the last term is immaterial, because it reverses when u is replaced by -u. It is therefore of interest to know that by a different foliation and a different coordinate system one can be led to a MKdV-equation (9) where the last term has a negative sign.

For this purpose we put

(16)
$$\omega_2 = Bdt, \quad \omega_1 = vdx + Edt, \quad \omega_{12} = \lambda dx + Fdt,$$

where λ is a parameter. Substitution into (1) gives

(17)
$$F_{x} = -KvB, \quad B_{x} = -\lambda E + vF, \quad E_{x} - v_{t} = \lambda B.$$

Suppose $K \neq 0$, we get, by eliminating B, E,

(18)
$$v_t = \left(\frac{F_x'}{Kv}\right)_{xx} + (vF')_x + \frac{\lambda^2}{Kv}F_x',$$

where

(19)
$$F = F'\lambda.$$

The choice

(20)
$$F' = \frac{K}{2}v^2 - \lambda^2$$

reduces (18) into

(21)
$$v_{t} = v_{xxx} + \frac{3}{2}Kv^{2}v_{x}.$$

Here the sign of the second term depends on the sign of K.

It can be proved that the choice (20) corresponds to a foliation which is characterized by

(22)
$$q = \frac{p_{11}}{p_1} - 3\frac{p_1}{p} = \left(\log \frac{p_1}{p^3}\right)_1.$$

References

 S. S. Chern & C. K. Peng, Lie groups and KdV equations, Manuscripta Math. 28 (1979) 207-217.

> University of California, Berkeley Universidade de Brasilia, Brasil